Short Course Catalogue - Geophysics

 

Geophysics - Seismic Acquisition

Seismic Acquisition

Advanced Marine Seismic Acquisition Techniques

Instructor: Dr Mike Branston (Schlumberger)

The course is designed to familiarize the student with the latest developments in Marine Seismic Acquisition including Wide-Azimuth with its many geometry variants, Broadband techniques (boosting the high and low frequencies), seabed receivers for both P-wave and Converted-wave recording, time-lapse surveys and the emerging technology of simultaneous source acquisition. The course starts with an overview of conventional 3D towed streamer seismic acquisition and then concentrates on recent advances that have enabled dramatic improvements in seismic data quality and interpretability.

More information

Broadband Seismic: A Platform to Understand, Measure, Compare and Exploit the Options Available

Instructors: Dr Andrew Long (Petroleum Geo-Services) and Mr Mazin Farouki (Petroleum Geo-Services)

The course provides a comprehensive but accessible overview of the many concepts relevant to broadband seismic. A key outcome is an appreciation of how the many processing and acquisition-based ‘broadband’ solutions can be understood, measured and compared. Furthermore, the broadband concept leads to a wider issue; full-wavefield seismic, where the full primary and multiple wavefields can be used to illuminate, image and characterize the earth far more comprehensively than possible today. The course content is unbiased and will attempt to objectively consider all solutions available in academia and industry today, as well as introduce emerging novel and lesser known ideas and solutions.

More information

Seismic Acquisition from Yesterday to Tomorrow

Instructor: Mr Julien Meunier (Independent Consultant)

There seems to be a very recent acceleration in the evolution of seismic acquisition. Offshore, wide-azimuth surveys have resulted in images of remarkable clarity. On land, increase in channel count has allowed the use of denser grids leading to significant noise reduction. Both onshore and offshore, the race for bandwidth extension is tenser than ever.

More information

The Benefit of Broadband Technology for Reservoir Characterization and Imaging – the End-User Value

Instructor: Dr Cyrille Reiser (Petroleum Geo-Services)

The main aim of this course is to provide a very accessible overview of the many concepts behind broadband seismic (primarily offshore) and its implication for the reservoir focused asset based geoscientist. This will be done through the a very comprehensive set of case study material from all regions of the world and for various stages of the exploration, appraisal and development asset life cycle. The course aims to objectively discuss the various broadband seismic technologies and commercial offerings available today and their respective merits with regards to quantitative reservoir characterization and reservoir imaging using real world application examples. The course will further attempt to identify possible pitfalls and issues with regards to the treatment of broadband data that might lead to flawed or erroneous QI.

More information

Understanding Ocean Bottom Seismic

Instructor: Mr Mark Thompson (Statoil)

The use of Ocean Bottom Seismic (OBS) is increasingly more utilised. The placement of receivers on the sea floor, allows for measurement of both pressure and shear waves, while the decoupling of source effort from receiver effort allows for full azimuth imaging. The characteristics of OBS creates challenges, which need to be addressed in survey design, acquisition, processing, imaging and interpretation. Through examples, successful use of this technology will be demonstrated.

More information

Broadband Technology

Instructor: Dr Robert Soubaras (CGG)

This one-day course is intended to explain how, by combining advances in equipment, acquisition design and processing, the bandwidth of marine seismic images has been increased recently from 3 to 6 octaves. The course starts with a theoretical part that provides a unified framework allowing to cover the theory of the various marine broadband methods that are currently used (over-under, dual sensor, variable-depth), with the aid of synthetic examples as well as real data results based on the variable-depth streamer method. After the specific receiver deghostings are addressed, other processing steps that have to be adapted to broadband data are described.

More information

Time-Lapse Seismic: A Multidisciplinary Tool for Effective Reservoir Management

Instructor: Mr Cedric Fayemendy (Statoil)

Geophysical Reservoir Monitoring (GRM) of reservoirs relies on frequent time-lapse observations with high-survey repeatability. This technology is a key enabler for maximizing the oil recovery of oil and gas fields. The GRM technology aims at understanding and updating the knowledge of producing reservoirs. This is achieved through mapping the movement of fluid and pressure fronts and fluid contacts during production and injection. The combination of production monitoring with repeated seismic acquisition and geological and reservoir information provides reliable estimates of static and dynamic reservoir parameters. The lecture will first review the geophysical reservoir monitoring history at Statoil. We will share our experience with 4D processes, resources allocation and the overall monitoring strategy. The lecture will also cover challenges in understanding the 4D responses and value creation. Finally, we will look at how we push the GRM technology towards higher use of quantitative results.

More information

4D Seismic for Reservoir Management

Instructor: Mr Ian Jack (Independent Consultant)

After a short perspective on the development of 4D seismic from the 1980s to its routine use in mature areas, the course covers the basics of rock and fluid physics. It moves on to describe current best practice and the technical and operational requirements for successful implementation of time-lapse technology whether for hydrocarbon extraction or for CO2 injection.

More information

Land Seismic on New Technological Level

Instructor: Dr Anatoly Cherepovskiy (Independent Consultant)

This course will provide information related to recent trends and advances in land seismic data acquisition technology, equipment and the methodologies that are being utilized to improve seismic imaging quality and productivity of 3D acquisition with an emphasize on the high-end surveys as performed in open areas. The course will not cover the fundamentals of 3D and multicomponent seismic survey design, although there will be a section that will give a review of recent survey design approaches and principles.

More information

Land Integrated Survey Design

Instructor: Mr Paul Ras (SD2I Geophysical Consulting)

This course presents an integrated approach to modern land 3D survey design as it has a key role in the seismic value chain going from acquisition to processing, imaging and inversion and characterization. It describes the main technology advances in land acquisition: high-channel count single sensor (point receiver), simultaneous source high-productivity vibroseis, broadband and wireless nodal systems. New acquisition technology has in turn inspired progress in processing, imaging and inversion and characterization. Survey designs have changed accordingly; wide azimuth high-density surveys are now the norm in many environments. And the survey design workflow now includes single sensor, single source, simultaneous source, broadband, symmetric sampling, cross-spreads, spatial continuity and more powerful 5D interpolation methods. It has also become more integrated, with requirements from inversion and characterization, imaging and processing feeding back to the design and hence acquisition.

More information

Basic Geophysical Data Acquisition and Processing

Instructor: Dr Jaap C. Mondt (Breakaway, Netherlands)

This course presents various geophysical methods from gravity to magnetics, electrical, electro-magnetic, refraction and reflection seismic.

More information

Advanced Seismic Data Acquisition and Processing

Instructor: Dr Jaap C. Mondt (Breakaway, Netherlands)

The course deals with advanced methods of seismic acquisition and processing. It will be taught not only by explaining the methods, but above all by applying the theory in mainly Excel based assignments.

More information

--

 

Geophysics - Seismic Processing

Seismic Processing

A Comprehensive Overview of Seismic Data Processing Steps

Instructor: Mr Piet Gerritsma (Gerritsma Geophysical Training and Consultancy)

Seismic data processing can be characterized by a sequence of steps where for each of these steps there are a number of different approaches. This course gives a comprehensive overview of the steps that are common in seismic data processing and discusses for each step a variety of alternative implementations together with their inherent assumptions and strengths and weaknesses.

More information

An Introduction to Velocity Model Building

Instructor: Dr Ian Jones (ION)

The course will begin with a review of migration and then move-on to cover the motivations for building detailed velocity models, and briefly discuss the inherent limitations on our ability to build a detailed model. Current-day practice will be covered, exemplified via several case-studies and will end with a synopsis of the less well known and emerging techniques. Following the course, participants should understand how migration works, in terms of the approximations involved, and how this relates to the geology to be imaged, and also appreciate the limitations of current and future imaging and velocity estimation technology, so as to be able to decide what model building technique should be employed to image a given geological objective.

More information

Applications of Seismic Anisotropy in the Oil and Gas Industry

Instructor: Dr Vladimir Grechka (Marathon Oil Corporation)

Elastic anisotropy can strongly influence seismic data. This course discusses modeling, inversion and processing of seismic reflection and VSP data in the presence of anisotropy. The most critical step in extending the existing processing techniques to anisotropic media is to identify and estimate the medium parameters responsible for measured seismic signatures. The course emphasizes these parameters for vertical transverse isotropy – the anisotropic model usually associated with shales. Field-data examples illustrate the improvements in imaging achieved by anisotropic migration algorithms and the possibility of using anisotropy for lithology discrimination and fracture characterization.

More information

Seismic Multiple Removal Techniques: Past, Present and Future

Instructor: Dr Eric Verschuur (Delft University of Technology)

The main objective of this course is to provide the audience with an overview of the techniques in seismic multiple removal, starting with the deconvolution-based methods from the 1960s, via the move-out discrimination techniques of the 1980s and ending up with wave-equation based methods from the 1990s and their 3D extensions as developed in the 2000s. For each method some brief description of the theory in terms of mathematics is given. However, the emphasis in this course is not to thoroughly treat the mathematics but to present some understanding of the workings of each method.

More information

Understanding Seismic Anisotropy in Exploration and Exploitation: Hands On

Instructor: Dr Leon Thomsen (Delta Geophysics)

This course covers all areas of applied seismic anisotropy, with class exercises and ample time for full discussion. Because anisotropy is such a fundamental concept, it covers topics in seismic acquisition, processing, imaging and interpretation, all based on seismic rock physics.

More information

--

 

Geophysics - Surface Imaging

Surface Imaging

Full Waveform Inversion in an Anisotropic World. Where Are the Parameters Hiding?

Instructor: Prof. Tariq Alkhalifah (KAUST)

The course starts by introducing the fundamentals of full-waveform inversion (FWI) starting from its basic definition. It focuses on the model update issues and provides analysis of its probable success in converging to a plausible model. In the course we will discuss the many challenges we face in applying FWI on seismic data and introduce modern day proposed solutions to these challenges. The focus of the course will be on FWI applied to anisotropic media. As a result, the course will also introduce anisotropy, its optimal parametrization and wavefield simulation in such media. Practical multi-parameter inversion for anisotropic parameters requires an optimal FWI setup. We will discuss such a setup, which includes the proper parametrization of the medium and data access scheme necessary for a potential convergence to a plausible anisotropic model.

More information

Principles and Applications of Seismic Interferometry and Ambient Noise Seismology in Hydrocarbon Exploration

Instructor: Dr Gerard Schuster (KAUST)

This one-day course is designed for a broad range of seismic researchers, data processors, and interpreters working in the petroleum industry. The course teaches the principles of seismic interferometry, ambient noise seismology and their applications to surface seismic, VSP, and OBS data. The ultimate objectives are to enable geophysicists to evaluate the potential of seismic interferometry in uniquely solving their problems.

More information

Seismic Diffraction – Modelling, Imaging and Applications

Instructors: Prof. Evgeny Landa (Tel Aviv University) and Dr Tijmen Jan Moser (Moser Geophysical Services)

Diffractions have been identified as the key seismic manifestation of fractures and other small-scale reservoir heterogeneities. This two-day course will present the current state-of-the-art of diffraction technology and put this in context by a review of its past developments. The course will cover both forward diffraction modeling and diffraction imaging. Case studies of diffraction imaging will be presented covering applications in seismic exploration and other areas of geoscientific interest.

More information

3D Tomography by Active and Passive Seismic Data

Instructor: Prof. Dr Aldo Vesnaver (The Petroleum Institute)

Building a 3D Earth model in depth is needed not only for accurate seismic imaging, but also for linking well data (as logs and cores) and reservoir simulations. Tomography can build a 3D macro-model for P and S velocities that integrates surface and well data, as well as active and passive seismic. This short course will introduce the basic concepts of traveltime inversion keeping all the math at a very basic level.

More information

Applied Depth Imaging

Instructor: Dr Ruben Martinez (Reservoir Geoscience)

This course has two main segments. In the first segment, we will understand the basic concepts behind the velocity model building and depth migration tools commonly employed in depth imaging. In the second segment, we will learn how to use these tools for building velocity models and produce seismic images in depth using practical work flows for a variety of complex geologic scenarios.

More information

Beyond Conventional Seismic Imaging

Instructor: Prof. Evgeny Landa (Tel Aviv University)

While depth imaging plays an increasing role in seismic exploration, prestack data analysis and imaging in the time domain remain important issues in processing and interpretation. Time imaging provides sufficient information for a variety of subsurface models of moderate complexity. Moreover, for more complex models that request the use of prestack depth migration, time imaging usually constitutes a key first step, which facilitates the estimation of the velocity model for depth imaging.

More information

Image Log Interpretation

Instructor: Prof. Peter Lloyd (Honorary Professor)

The course has been designed for geoscientists, engineers and other technical staff who want to analyze and integrate image and dip data with other logs and seismic to enhance their understanding of exploration plays and field development. It leans heavily on worked class examples and case studies. Instead of interpreting image and dip data in isolation, the course shows how they can be used in conjunction with cores, other logs, modern depositional analogues, outcrop studies and hi-resolution seismic data to refine reservoir models.

More information

Seismic Depth Imaging and Anisotropic Velocity Model Building

Instructor: Mr Etienne Robein (ERT)

The course will present in simple terms (cartoons rather than equations!) the principle of different techniques in each class of methods (Kirchhoff, Beam Migrations, WEM, RTM), while pointing out their respective merits and limitations. Similarities and differences between Time- and Depth-Imaging will be briefly reminded. In parallel, special emphasis is put on methods used to build the necessary anisotropic velocity models. Both Ray-based techniques (linear and non-linear tomography) and wavefield extrapolation-based ones, including Full Waveform Inversion, are addressed.

More information

Full-Waveform Inversion for High-Resolution Reservoir Characterization

Instructor: Prof. Dr Dries Gisolf (Delft Inversion)

This two-day course will start with an introduction and a short recap on complex integral transforms (Fourier, Laplace, F/K and linear Radon). Followed by topics on: - The acoustic wave equation in inhomogenous media - Integral representations of the acoustic wave equation; Kirchhoff-Rayleigh and the Scattering Integral (Lippmann-Schwinger) - The AVO data model; Zoeppritz reflection coefficients - Linear inversion of AVO data including regularisation; synthetic and real data examples - The non-linear data model for inversion; data equation and object equation; iterative, multiplicatively regularised inversion - Applications based on an elastic full-wavefield non-linear data model; realistic synthetic reservoir study, real data case studies including low-frequency model extraction and seismic-to-well matching. Synthetic time-lapse example.

More information

Migration, DMO and Velocity Model Building

Instructor: Mr Piet Gerritsma (Gerritsma Geophysical Training and Consultancy)

The process of migration, whereby a proper image in time or depth of the subsurface is obtained, is directly related with the velocity model that both serves as input for the migration process as well as is the result of such a migration. Therefore migration and velocity model building are intimately related processes.

More information

The Principles of Quantitative Acoustical Imaging

Instructor: Prof. Dr Dries Gisolf (Delft Inversion)

This course presents a systematic approach to imaging of acoustic reflection data and the extraction of media property information from the image amplitudes, based on wave theory. Although the approach is valid for a wide range of acoustical frequencies and applications, there is a bias towards seismic imaging.

More information

--

 

Geophysics - Integrated Geophysics

Integrated Geophysics

Geostatistics for Seismic Data Integration in Earth Models

Instructor: Prof. Olivier Dubrule (Imperial College London)

In recent years the use of geostatistics has spread from the world of reservoir characterization to that of velocity analysis, seismic inversion, uncertainty quantification, and more generally to that of seismic data integration in earth models. Nevertheless, many geoscientists still regard geostatistics as little more than a statistical black box. By explaining the concepts and applications, this course clarifies the benefits of geostatistics and helps spread its use.

More information

Integrated Seismic Acquisition and Processing

Instructor: Mr Jack Bouska (Independent Consultant)

This course covers modern techniques in 3D seismic acquisition, from the perspective of seismic as an integrated system comprising: acquisition design, field operations, data processing, imaging, and interpretation. This one day course will review the basics of 3D survey design, with emphasis on how practical aspects of interpretation, data processing, imaging and/or field operations can either constrain.

More information

Integrated Reservoir Modelling

Instructor: Prof. Dr Michael Poppelreiter (University Technology Petronas)

This outcrop-based course provides participants with an overview of the integrated reservoir modeling process, tools and tasks. The data set is from a Tertiary carbonate reservoir. It exposes participants to hands-on integrated reservoir modeling. A conceptual reservoir model and a digital reservoir model are constructed on paper and digitally. Common sedimentological techniques such as section logging, gamma ray measurements and interpretation of aspect ratios from photo panels and maps will be demonstrated and practiced. All data required to build models are actual industry data. The uncertainty of all data sets is assessed. Alternative models are constructed. QC of data versus interpretation is an integral part of the course. A strong emphasis is put on stratigraphic correlation framework and structural model building. Property modeling and volumetrics are carried out interactively as a team exercise. Team interaction is a fundamental component of this course.

More information

--

 

Geophysics - Reservoir Characterization

Reservoir Characterization

3D Seismic Attributes for Prospect Identification and Reservoir Characterization

Instructor: Dr Kurt Marfurt (University of Oklahoma)

Seismic data are incredibly rich in information, including amplitude, frequency, and the configuration or morphology of reflection events. Seismic attributes, including volumetric estimates of coherence, dip/azimuth, curvature, amplitude texture, and spectral decomposition, can greatly accelerate the interpretation of newly acquired 3D surveys as well as provide new insight into old 3D surveys.

More information

Microseismic Monitoring in Oil and Gas Reservoirs

Instructor: Dr Leo Eisner (Seismik)

This course will discuss principles of microseismic monitoring. A brief historical overview of earthquake and micro-earthquake monitoring techniques in related fields will allow basic insight and provide list of most important publications. Downhole monitoring techniques will be described with detailed examples of complete process from velocity model building, through geophone orientation to microseismic event locations.

More information

Seismic Fracture Characterization: Concepts and Practical Applications

Instructor: Dr Enru Liu (ExxonMobil)

The ability to identify fracture clusters and corridors and their prevalent directions within many carbonates and unconventional resources (shale gas, tight gas and tight oil reservoirs) can have a significant impact on field development planning as well as on the placement of individual wells. The characterization of natural fractures is difficult and cannot be achieved by any single discipline or single measurement. Geophysics can identify spatial distributions of fractures and fracture corridors between wells and seismically-derived fracture information to complement (not compete with) other measurements, such as outcrops, core, FMI, cross-dipole and other fracture information. This course is an introduction to the fundamental concepts of seismic fracture characterization by introducing seismic anisotropy, equivalent-medium representation theories of fractured rock and methodologies for extracting fracture parameters from seismic data. With a focus on practical applications, three case studies are presented to demonstrate the applicability, workflow and limitations of this technology: a physical laboratory 3D experiment where fracture distributions are known, a Middle East fractured carbonate reservoir and a fractured tight gas reservoir.

More information

Seismic Reservoir Characterisation

Instructor: Dr Sagar Ronghe (DownUnder GeoSolutions)

The course discusses reservoir characterisation through the integration of wireline and seismic data as applicable to all stages of oil and gas field activity: from reconnaissance, through exploration and appraisal, to focused reservoir characterisation during field development. Techniques presented include amplitude and AVA interpretations, stack rotations, deterministic and stochastic inversion, probabilistic interpretations of lithology and fluid distributions, and quantification of reservoir properties including prediction uncertainty. The importance of petrophysics and rock physics calibration as a foundation to all of these methods is highlighted. The course also discusses the calibration of seismic velocities to well data for accurate time-to-depth conversion.

More information

Seismic Surveillance for Reservoir Delivery

Instructor: Mr Olav Inge Barkved (Petoro)

Time-lapse seismic surveys or 4D seismic provide snapshots of a producing hydrocarbon reservoir and its surroundings. The benefit of the technology in monitoring fluid and pressure changes and to point out bypassed oil or un-drained compartments has been well documented over the last 10–15 years. Still the technology is undergoing rapid development. This course will provide some context on what is driving the dynamic changes linked to producing a hydrocarbon reservoir and what we should expect to observe using seismic technologies in a varied geological setting. It will address key issues that impact the feasibility of time-lapse seismic and evaluate established methods. However, the focus will be on ‘new’ technologies, use of a permanent array, frequent seismic surveying and integration of the data. Examples from the Valhall field will be used extensively to illustrate the potential of seismic data and to articulate issues related to interpretation and integration. This will include data examples from marine towed 4D, frequent surveying using permanently installed sensors, in-well recordings and analysis of passive data, including micro seismicity. Use of seismic surveillance information to support reservoir management, new well delivery and base management will be a central part of the presentation.

More information

AVO in an Inversion World

Instructor: Dr Anthony Fogg (Arun Geoscience)

AVO (Amplitude Versus Offset) analysis has been a key technology for de-risking drill targets as it can potentially distinguish different fluids and litho-types. Over time the application of the AVO technique has evolved and merged with seismic inversion methods so that today the traditional AVO analysis techniques have been superseded by the analysis of rock property volumes on the interpreter’s work station. However, in order to derive these rock properties we still rely on the fundamental principles of AVO. This course covers the basics of AVO theory and how it is used to create attributes or inversion volumes from seismic reflection data that reveal the rock and fluid characteristics of the sub-surface. The course is not mathematical, but does review some simple equations that help the student understand how AVO is applied to create quantitative measurements from surface seismic data and interpret those results in terms of rock physics – often referred to as Quantitative Interpretation (QI).

More information

Geophysical Monitoring of CO2 Storage

Instructor: Prof. Martin Landrø (Norwegian University of Science & Technology)

The course discusses various methods for monitoring subsurface injection of CO2. Specifically, the following topics will be covered:

  • Rock physics related to injection of CO2 into porous rock
  • Time-lapse seismic methods
  • Gravity and electromagnetic methods
  • Saturation and pressure effects
  • Early detection of leakage
  • Mapping overburden geology and identification of potential weakness zones
  • Field examples
  • Well integrity issues
  • Using gas leakage as a proxy to study potential leakage of CO2
  • Laboratory experiments of CO2 flooding including acoustic measurements

 

More information

Rock Physics, Geomechanics and Hazard of Fluid-Induced Seismicity

Instructor: Prof. Serge Shapiro (Freie Universitaet Berlin)

Stimulations of rocks by fluid  injections (e.g.,  hydraulic  fracturing) belong to a standard reservoir-development practice. Productions of shale oil, - shale gas, - heavy oil, - geothermal energy require broad applications of this technology.  The fact that fluid injection causes seismicity (including microseismicity and, sometimes, significant induced earthquakes) has been well-established for several decades. Waste water injection into rocks, large-scale water reservoir constructions and underground carbon sequestrations are other examples of potentially seismogenic  fluid impact on geologic structures. Understanding and monitoring of fluid-induced seismicity is necessary for hydraulic characterization of reservoirs, for assessments of reservoir stimulation results and for controlling seismic risk of fluid injections and production. The course provides   systematic quantitative rock-physical and geomechanical fundamentals of all these aspects of the fluid-induced seismicity.

More information

Reservoir Model Design: How to Build Good Reservoir Models

Instructors: Dr Mark Bentley (AGR TRACS International) and Prof. Philip Ringrose (Statoil)

This short course will provide an introduction to reservoir model design, covering the following main design elements:

  • Model purpose;
  • The rock model;
  • The property model;
  • Model scaling;
  • Handling uncertainty.

 

More information

Reservoir Modelling Workflows under Uncertainty: Geostatistics and Machine Learning

Instructor: Dr Vasily Demyanov (Heriot-Watt University)

Reservoir prediction modelling is subject to many uncertainties associated with the knowledge about the reservoir and the way they are incorporated into the model. Modern reservoir modelling workflows, which are commonly based on geostatistical algorithms, aim to support development decisions by providing adequate reservoir description and predict its performance. Uncertainty about reservoir description needs to be accounted for in modelling workflows to quantify the spread of reservoir predictions and its impact development decisions. The course aims to build awareness of the impact the modelling choices on the reservoir predictions and their relation to the way uncertainty is incorporated into reservoir modelling workflows. The course addresses the problem of tying the workflow with the expected geological vision of a reservoir subject to uncertainty. This is associated with one of the common issues, when standard assumptions of a workflow are not consistent with the model geology or do not reflect possible variations due to existing uncertainty. The course demonstrates the implementation of geostatistical concepts and algorithms in geomodelling workflows and the ways uncertainty is accounted for in reservoir description and predictions. The course includes an overview of the state-of-the art conventional techniques and some novel approaches, in particular machine learning for reservoir description.

More information

Seismic Reservoir Characterization: An Earth Modelling Perspective

Instructor: Dr Philippe Doyen (Independent Consultant)

Three-dimensional numerical earth models play an increasingly important role in the petroleum industry to improve reservoir management and optimize hydrocarbon recovery. A key challenge for reservoir geoscientists is the quantitative integration of 3D and 4D seismic data into static and dynamic earth modeling workflows. Using a combination of theory and illustrations from real field studies, this two-day course reviews best practices and challenges for constraining earth models with seismic information and quantifying subsurface uncertainty.

More information

Uncertainty Quantification and Management

Instructor: Dr Dario Grana (University of Wyoming)

Integrated reservoir modeling workflows provide a set of techniques to create three-dimensional numerical earth models in terms of elastic, petrophysical and dynamic properties of the rocks at different time steps during exploration and production. The course focuses on the quantification of uncertainty in the data, in the physical models and in the predictions in reservoir modeling workflows. Topics include uncertainty quantification in seismic reservoir modeling, geostatistical reservoir simulations, fluid flow modeling, and reservoir monitoring. The link between uncertainty quantification and decision-making will be introduced through decision-making theory. The course will include demonstrations of the methodologies on real case applications.

More information

--